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BRIEF HISTORY OF FAIRNESS IN ML
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Time evolution of the topic “Fairness”
Number of papers uploaded on arXiv (in CS, Maths and Stats)
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Fairness in Machine Learning

Individual fairness Group fairness



Individual fairness

Ireat like cases alike
Aristotle, Nicomachean Ethics (IV century BC)

d(decision( ), decision(ﬂ.)) < d( ,ﬂ.)

“Fairness through awareness”, Dwork et al. Proceedings of the 3rd innovations in theoretical computer science conference (2012)
*What's Fair about Individual Fairness?” Fleisher. Proceedings of the AAAI/ACM Conference on Al, Ethics, and Society (2021)



Individual fairness

Ireat like cases alike
Aristotle, Nicomachean Ethics (IV century BC)

d(decision( %), demsmn(ﬂ)) d( ,ﬂ.)

How do you define the distance d?

“Fairness through awareness”, Dwork et al. Proceedings of the 3rd innovations in theoretical computer science conference (2012)
*What's Fair about Individual Fairness?” Fleisher. Proceedings of the AAAI/ACM Conference on Al, Ethics, and Society (2021)
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Group fairness

* Y response

X non-sensitive covariates

Let’s focus on groups (identified by their » S sensitive covariates
sensitive attributes S)

We'd like a fair group decision

- Statistical parity: y independent of S

[ PG=y*|5=1) -1

G=y*1S=0)| <(r)

User-defined unfairness level

- Equality of odds: y independent of S, conditional of y

|

=y*|S=1Y=y) I

=y*|S=0Y=y)|<r



Equalityvsequity

Bias transfrming
(statistical parity)

Bias preerving
(equality of odds)

“Bias preservation in machine learning: the legality of fairness metrics under EU non-discrimination law” Wachter et al W.
Va. Law Rev. 123, 735 (2021)



How do we solve this?

3 main approaches

* Pre-processing of the data



How do we solve this?

3 main approaches

* Pre-processing of the data

* Post-processing of the outcome of the model



How do we solve this?

3 main approaches

* Pre-processing of the data
* Post-processing of the outcome of the model

 Change the model: minimise the loss subject to a fairness criterion



How do we solve this?

3 main approaches

* Pre-processing of the data
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So...what did we do?

Achieving fairness with a simple
ridge penalty

.. Propose aregression model that achieves statistical parity
~ (and other definitions of fairness) using a ridge penalty




/" Hey, could you help in

finding a method to do
perform
fair regression?

e

{ Sure, let’s start by seeing \

what’s already available
out there



“Nonconvex optimization for regression
with fairness constraints”

Komiyama et al. Proceedings of ICML (2018) Statistical Parity:
y independent of S

e Let’s disentangle the contribution of S from X

X=B/S+U
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Komiyama et al. Proceedings of ICML (2018) Statistical Parity:
y independent of S

e Let’s disentangle the contribution of S from X
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» Let’s enforce statistical parity through limiting the variance of y explained by S
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Komiyama’s approach

To address collinearity in S, they
construct U with regularised regression
(with penalty A) which makes U
correlated with S.

Let’s call this version ﬁ.

Rsz(a, 5) = Var(Sa)A _ Var(Sa) A
Var(Sa + Up)  Var(Sa) + Var(Up)
R%(a, 5) = Var(Sa) Var(Sa)

Var(Sa + Up) N Var(Sa) + Var(UpB) — 2Cov(Sa, UB)



Komiyama’s approach

y=2X14+3X,+4x3+551+65,+7S53+ ¢

R(a, p) =

R%(a, ﬂ) —

o O O O O O

Var(Sa)
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Var(Sa + Up)

Ri(a, p)
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Komiyama’s approach

y:S(I+ﬁﬁ+€

Y=Sa+ﬁﬁ_|_€
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Our proposal: use ridge regression

(Arrrm Prrrw) = @rgmin_ Iy — Sa — US| + A(0)lall3,
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Our proposal: use ridge regression

(Arrrm Prrrw) = @rgmin_ Iy — Sa — US| + A(0)lall3,

with A(r) s.t. RX(a, f) = varbe) |

C”’ (Sa) + Var(Up)

1. Compute U

. | @FRRM | _ [ (STS +A(I) ' STy
e — ﬂFRRM (UTU) 1IJT

3. Compute ag g = (STS)~!STy.

2
If RS(Aops5 ﬁFRRM) <r O‘FRRM = Qs
Else: find A(r) s.t. Rz(aFRRM, ﬁFRRM) = r and the corresponding @ zrr1s
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Properties 3j=Sa+Up+¢

* [he problem is guaranteed to have a
single solution

Var(S(S'S + A1)~ !STy)
- A — r
Var(S(STS + AD)~1STy) + Var(Up)

» (Coefficients behave monotonically in r

* Easier to optimise (than Komiyama)

coefficients

S3
S2

/— ST
U3

ya

y )
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Possible extensions

(FRRM, BERRM)

= argmin ||y — Sa — X813 + A1 (") leell5 + A2 118113
* Improve accuracy and address collinearity «.p

Different penalties

e Variable selection: LASSO or elastic net penalties

Different definitions of fairness

e Equality of odds: §7 independent of S, conditional of y

i
Yy=y¥ +S¢+e"

 |ndividual fairness

Different models

* (Generalised linear models (GLM) (@FRRM, BrRRM) argngin D(a, B) + A(r)lecll3
o,
e (Cox proportional hazard model D(@, f) — D, B) _

N4
. . D(a, B) — D(0, 0)
» Kernel ridge regression model



Real data experiments and comparisons

Communities and Crime (810 observations, 101 socio-economics predictors)
Y: normalised crime rate

S: proportions of African-American people and foreign born people

COMPAS (5855 observations, 13 predictors)
y: % recidivating within 2 years
S: offender’s gender and race

National Longitudinal Survey of Youth (4908 observations, 13 labour market predictors)
y: income in 1990

S: gender and age

Law School Admissions Council
y: GPA
S: race and age

German Credit (1000 observations, 42 predictors)
y: % of good and bad loans

S: age, gender and foreign-born status



Real data experiments and comparisons
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Zafar, Valera, Gomez-Rodriguez, Gummadi: Fairness constraints: a flexible approach for fair classification. J. Mach. Learn. Res. 20 (2019)
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Summary
PROS
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 Easy and fast to run (fairml R package)

* Works with different types of response variables

* Works with multivariate sensitive variables, of different type
* Works with different definitions of fairness

CONS

o Criticism agains use of RS2
* You need to specify S



Thank you very much!

Questions?




